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the representation of the, frequently bimodal, MIR  
phase probability distributions as unimodal. 

More generally, other types of information, such 
as those listed in SG1 and including non-convex 
constraints, may be incorporated into the maps via 
ME and using the present map as a starting solution. 
The more information that is introduced, the smaller 
should be the range of allowable solutions, even when 
uniqueness cannot be guaranteed. 

We are grateful to various colleagues for helpful 
discussion and encouragement including Drs S. 
Steenstrup, J. N. Varghese, P. Colman, A. McL. 
Mathieson, W. Hendrickson and J. Skilling. One of  
us (SWW) is grateful to the Royal Society for the 
award of a Visiting Fellowship and to Professor Sir 
David Phillips for his encouragement of this work 
and for extending the hospitality of his department 
for a stay during which this work was largely 
undertaken. 

APPENDIX 1 

The algorithm used in deriving the present ME struc- 
tures is essentially that outlined in our previous work 
(SG1; Wilkins, 1983), but with only the first constraint 
[equation (2)] operative. With the same notation as 

in our earlier works, a flow chart of the algorithm is 
presented in Fig. 4 and includes indications as to 
where additional processing (such as local smooth- 
ing) may be carried out, although such processing 
was not actually carried out in the present study. 
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Abstract 

The equilibrium equations of classical elasticity for a cubic 
crystal are solved and Green's tensor for elastic displace- 
ments is derived. 

1. Introduction 

The point force technique provides a powerful tool for the 
solution of problems in the continuum theory of elasticity, 
particularly in the continuum theory of dislocation (Hirth 
& Lothe, 1968). The only difficulty arising is in representing 
Green's tensor. It is known explicitly for isotropy and 
transverse isotropy, but not general anisotropy. The aim of 
this paper is to obtain Green's tensor for an infinite three- 
dimensional body with cubic symmetry. 
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2. Formulation of the problem 

The usual suffix notation will be employed. The summations 
should be carried out on repeated indices. This convention 
is adopted throughout this paper. 

The equilibrium equation of classical elasticity is most 
easily obtained in a coordinate system whose bases parallel 
the cubic axes of the matrix. The cubic matrix has three 
independent elastic constants, the Voigt constants c~1, cx2 
and c44 (Hirth & Lothe, 1968). With the definitions 

C12 = A, c44=1 x , ct1- c12- 2c~ = Al, 

the fourth-order elastic tensor may be written in the follow- 
ing form: 

Cijkm = t~ij~km "~ ~.~( ~ik~jm -~ ~im~jk) 

+ A18~i8i~8k,,, (1) 
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where ~mn is the Kronecker delta, which has the value 1 if 
m = n and is zero for m # n. 

The substitution of (1) into theequilibrium equation of 
classical elasticity gives 

02Ui+ (A 0 OUj 02Ut 
0,'-0-~?c~ +/~) O-~x~ O---x~ + A 1 -~-x ~ ~- + f  =0 '  (2) 

where x~, u~ and f~ represent the orthogonal Cartesian 
coordinates, the i component of the elastic displacement 
vector and the i component of the body force, respectively. 
These are the three simultaneous equations for i = 1, 2 and 3. 

The general solution of these nonhomogeneous equations 
can be obtained by adding a particular solution of (2) to 
the general solution of the homogeneous equations 
obtained from (2) for f = O. 

3. General solution of the homogeneous equations 

For f~ = 0, (2) yields the homogeneous equations. It is 
natural to seek a general solution of these three-dimensional 
equations in terms of space harmonic functions (Sokol- 
nikoff, 1956; Love, 1927). The results of potential theory 
(Sokolnikoff & Redheffer, 1966) show that the divergence 
and curl of the displacement vector can be specified 
independently and that a vector u can be represented in 
terms of a scalar potential U and a vector potential A, 

u = V U+ curl A. (3) 

On calculating the divergence of u in (3), we get V. u = 
V2U. So that, for f = 0, (2) becomes 

0-~jT[0,ui + (A + 0")~--xi'0U+Ax6,su,] =0. (4) 

For each i, (4) must be satisfied, so that, for each i and j, 

0,u~ + (X + 0,)o UlOx~ + At 8uu~ = ~o~, (5) 

where q~ is an arbitrary harmonic vector. The divergence 
of (5) gives 

^ A - t  V2U=(A+20,+Ate~.ej) Otpn/Ox,, (n=1,2 ,3) ,  (6) 

where ~ is a unit vector and ~ .  ~j = g0- Since tp~ is a 
harmonic function, V2(xitpi)= 20tp~/Ox~. Thus, a particular 
solution of (6) is 

U=½x,~o,/(A + 20, + At 8ii), (7) 

and its general solution can be obtained by adding an 
arbitrary harmonic function ~o[= ~Po/(A +0,) to (7). Then, 
the general solution of the homogeneous equations (4) is 
found by using (5), (7) and ~p[ in the following form: 

(0" + AtOu)ui = ~p~ - Oq~o/OX~ 

-½(A + 0")(A + 20, + XxSO)-tO(x,4o,,)/Ox,, (8) 

involving four arbitrary harmonic functions. In connection 
with the two-dimensional problems, one of the space 
harmonics in the representation (8) can be eliminated 
(Sokolnikoff, 1956), so that the general solution of these 
three-dimensional equations involves only three indepen- 
dent harmonic functions. 

4. A particular solution of the nonhomogeneous equations 

Suppose that a point force f~(r)  is acting at the origin. For 
i = 1, the substitution of (3) into (2) yields the result 

+ O.-L[~V2A~+AtO~I 

= - f t S ( r ) .  (9) 
Oxsk Ox~ .! 

The body force can be expressed by means of formulae of 
the type (Love, 1927) 

Ft = -(ft/4~r)[oer-t/Ox 2 + oer-t/Ox2-oer-t/Ox23]. (10) 

From (9) and (10), one obtains 

(A + 20")V 2 U + At 0e U / O x  2 = (ft/4~')Or-t/Oxi 

0"VeA3 + A tOeA3/ Ox 2 = ( f  t/ 4,rr )Or-1/ OXe 
( 1 1 )  

0"V2A2 + AtOeA210x 2 = --(ft/ 4~r)Or-t/ Ox3 

At =0. 

Since Ve(Or/Oxi)=2Or-t/Oxi, the particular solutions of 
(11) are 

U = f l  OrlOx1 A s -  fa Or/Ox2 
8~r (A +20"+At6~s)' 8~r (0"+A~6tS)' 

A Or/Ox3 
A2 = 8~r (0" + AtOtj)' At = 0. (12) 

For fl S0  and fe=f3=O, (!2) changes (9) to v2velrl = 
-8~rO(r). From (3) and (12), the displacements due to fl 
are also obtained. 

By repeating the same procedure for f2 # 0, ft =fa = 0; 
and f3 # 0, ft  =f2 = 0; and using the interchangeability of 
the i and j, a particular solution of (2) can be written as 

Uim(r) = [8"n'(0" + AlOij)] -1 

E (A + 0")fm 0 2 r ]  (13) 
x ~imf/V21 (A+20"+AtOo) OXiOXra2. 

One finds that Uim(r) represents the i component of the 
displacement produced by a point force fm applied in the 
m direction at the origin. The displacement Utm (r) due to 
a unit point force fm = 1 applied in the m direction at the 
origin is called the tensor Green function for the elastic 
displacements. It gives the response of an infinite body to 
a point force. 

The author thanks Dr T. Ozi~ for many useful discussions. 
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